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Human Immunodeficiency Virus (HIV) remains a major global public health challenge, 

particularly in sub-Saharan Africa where late diagnosis, treatment delay, and incomplete viral 

suppression continue to sustain transmission. In this study, we formulate and analyze a 

deterministic compartmental model incorporating screening, diagnosis, treatment, viral 

suppression, and AIDS progression dynamics. The force of infection is modeled using a 

frequency-dependent transmission mechanism with differential infectivity contributions from 

diagnosed, treated, and AIDS individuals. Qualitative analysis of the model establishe s 

positivity and boundedness of solutions. The disease free equilibrium is obtained and its local 

and global stability are rigorously analyzed using the Routh–Hurwitz criteria and comparison 

theorem. The basic reproduction number R0 is derived using the next-generation matrix 

approach, and its sensitivity indices with respect to key epidemiological parameters are 

computed. Results show that strengthening early screening and sustained viral suppression 

through consistent treatment significantly reduces R0 and drives the system toward disease 

elimination. The findings provide useful insights for optimizing HIV control strategies. 
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1. Introduction  
Human Immunodeficiency Virus (HIV) remains one of the most serious global public health threats despite significant advances 

in treatment and prevention. Since the beginning of the epidemic, over 85 million people have been infected wor ldwide, with sub-

Saharan Africa bearing a disproportionate burden of disease [1]. The introduction of antiretroviral therapy (ART) has dramatically 

improved survival among people living with HIV and transformed the disease from a fatal infection into a man ageable chronic 

condition [2]. Beyond its therapeutic benefits, ART plays a crucial role in reducing transmission by lowering viral load. A major 

scientific breakthrough in HIV prevention is the recognition of the Undetectable = Untransmittable (U=U) parad igm, which states 

that individuals who maintain sustained viral suppression do not transmit HIV sexually. Large multicenter studies such as HPT N 

052 and the PARTNER trials reported zero genetically linked transmissions among serodiscordant couples when the  infected 

partner achieved viral suppression [3, 4]. Mathematical modeling has long been an essential tool for understanding HIV 

transmission dynamics and evaluating intervention strategies [5]. Early compartmental models provided insights into epidemic 

thresholds and persistence, while later studies incorporated treatment effects and behavioral changes. However, many existing 

HIV models fail to explicitly distinguish between treated individuals who remain infectious and those who are fully virally 

suppressed. Furthermore, treatment failure, AIDS relapse into care, and differential disease induced mortality are often neglected, 

potentially leading to biased estimates of transmission dynamics. The present study develops a comprehensive deterministic 

model that integrates screening, diagnosis, treatment initiation, viral suppression, treatment failure, progression to AIDS, and 

disease-induced mortality. By aligning mathematical structure with modern clinical evidence, the model provides a robust 

framework for evaluating HIV control strategies. 

 

2. Literature Review 
Several HIV-specific models have since been developed: Ndelwa, Luboobi, and Mugisha (2015) developed a mathematical model 

on the Role of Diagnosis and Treatment in HIV/AIDS Dynamics with the aim of as sessing the impact of screening and diagnosis 

on HIV transmission. Employing a deterministic compartmental framework that distinguishes undiagnosed and diagnosed infected 

individuals, they conducted equilibrium and stability analysis supported by numerical simulations. Their results showed that 

increased screening significantly reduces HIV prevalence by shortening the highly infectious undiagnosed period; however, 

treatment success and viral suppression were not explicitly incorporated. 

Huo and Chen (2015), in their study on Stability and Bifurcation Analysis of an HIV/AIDS Epidemic Model with Treatment, 

aimed to investigate the effects of antiretroviral therapy on HIV transmission dynamics. They formulated a nonlinear HIV mode l 

that incorporates treatment and applied stability and bifurcation theory to analyze system behavior. The findings revealed that 

ART substantially reduces the basic reproduction number and can lead to disease elimination under sufficient treatment covera ge, 

although treated individuals  were assumed to remain partially infectious. 
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Bashiru and Fasoranbaku (2019), worked on Mathematical Modeling of HIV/AIDS Transmission Dynamics with Treatment, 

where they examined the role of treatment and disease progression to AIDS in HIV dynamics. Using  a compartmental model that 

included an AIDS class, they analyzed equilibrium solutions and stability properties of the system. Their results highlighted  the 

significant influence of AIDS-related mortality on disease dynamics, but the contribution of AIDS individuals to transmission was 

treated inconsistently. 

Cohen et al. (2016), through the clinical trial: Antiretroviral Therapy for the Prevention of HIV-1 Transmission, aimed to 

determine whether early ART initiation could prevent sexual transmission of HIV. Using a large randomized controlled trial 

involving serodiscordant couples, the study demonstrated a near-complete elimination of HIV transmission among individuals 

receiving effective ART. This landmark finding provided strong empirical support for treatment-as-prevention strategies. 

Rodger et al. (2016), in their study on Sexual Activity without Condoms and the risk of HIV Transmission in Serodifferent 

Couples, investigated the risk of HIV transmission among individuals with sustained viral suppressio n. Using a prospective cohort 

design that tracked thousands of condomless sexual encounters, the study reported zero genetically linked HIV transmissions 

when viral load was undetectable, leading to the widely accepted Undetectable = Untransmittable (U = U) principle. 

Silva and Torres (2018), in their work on Modeling Treatment and Prevention Strategies for HIV/AIDS, aimed to evaluate the 

combined effects of prevention and treatment interventions on HIV transmission. They formulated a mathematical model tha t 

incorporates reduced infectivity due to ART and analyzed it using optimal control techniques. Their findings confirmed that 

treatment significantly reduces transmission, although viral suppression was modeled implicitly rather than as a distinct 

epidemiological class. 

Nsuami and Witbooi (2018), developed A Mathematical Model of HIV/AIDS with ART and Adherence, which investigated the 

impact of treatment adherence on HIV dynamics. By developing a compartmental model that included adherence -related 

parameters and conducting stability analysis, they demonstrated that poor adherence undermines the effectiveness of ART. 

However, individuals with durable viral suppression were not explicitly represented as a separate class.  

More recently, Odebiyi et al. (2024) developed a mathematical model assessing the impact of screening on HIV/AIDS 

transmission dynamics using a compartmental model. Their analysis showed that the importance of screening is evident in its 

ability to detect and reduce asymptomatic infectious individuals, which in turn leads to an increase among the symptomatic 

population, highlighting the importance of early detection of their status and preventing the spread of HIV/AIDS.  

Overall, the reviewed literatures demonstrate substantial progress in modeling HIV screening, treatment, and disease progression. 

However, most existing models do not explicitly distinguish between treated individuals who are virally suppressed and those who 

are not, nor do they consistently incorporate frequency-dependent transmission. These gaps motivate the development of the 

present model, which extends the existing screening–treatment models (specifically the model by Odebiyi et al. (2024)) by 

explicitly incorporating viral suppression in line with contemporary clinical eviden ce. 

 

3. Methodology 
We formulate a deterministic compartmental model to describe the transmission dynamics of HIV using the model of (Odebiyi et 

al.,2024) as the basis model. 

 

3.1 Model assumptions 

The formulation of the model is based on the following ass umptions: 

 The total population is stratified into mutually exclusive epidemiological classes according to infection status, diagnosis, 

treatment, and viral suppression. 

 Recruitment and natural death occur at constant per capita rates. Also, all parameters are positive constant. 

 The population mixes homogeneously and susceptible individuals acquire HIV infection through effective contact with 

infectious individuals. 

 Newly infected individuals enter the undiagnosed infected class before screening. Screening leads to diagnosis, after which 

individuals may initiate ART. 

 Individuals on ART may achieve durable viral suppression and become epidemiologically non -infectious (U = U), hence, we 

assume that virally suppressed individuals do not contribute to new HIV infections. 

 Viral suppression may be lost due to treatment interruption, poor adherence, or drug resistance, returning individuals to the  

treated but unsuppressed class. 

 Disease-induced deaths occur in all infectious classes (with different magnitude) except the suppressed class whose life 

expectancy is approximately that of the general population. 

 AIDS patients can still initiate treatment. 

 

3.2 Model variables and parameters 

The variables and parameters used in the model, together with their descriptions are  given in Table 1 and 2 respectively. 

 

Table 1: Description of Model Variables  

Variable Description 

S(t) Susceptible individuals  

I(t) HIV-infected but undiagnosed individuals  

D(t) Diagnosed HIV-infected individuals  
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T(t) Individuals on ART but not virally suppressed 

V (t) Virally suppressed individuals (U = U) 

A(t) Individuals with advanced HIV/AIDS 

 

Table 2: Description of model parameters  

Parameter Description 

π Recruitment rate into the susceptible population 

µ Natural death rate 

β Effective HIV transmission rate 

η1 Relative infectivity of diagnosed individuals  

η2 Relative infectivity of treated individuals  

η3 Relative infectivity of AIDS individuals  

θ Diagnosis rate of undiagnosed individuals  

σ Progression rate from undiagnosed to AIDS 

τ Treatment initiation rate 

α Progression rate from diagnosed to AIDS 

ω Viral suppression rate 

ϵ Loss of viral suppression rate 

ρ Treatment failure rate leading to AIDS 

ϕ Treatment rate for AIDS individuals     Disease-induced death rate for undiagnosed individuals    Disease-induced death rate for diagnosed individuals     Disease-induced death rate for treated individuals     Disease-induced death rate for AIDS individuals  

 
3.3 Model Description and Equations 

The total human population at time t is divided into six epidemiological compartments: susceptible individuals S(t), undiagnosed 

infected individuals I(t), diagnosed infected individuals D(t), individuals receiving treatment T(t), virally suppressed individuals V 

(t), and individuals with AIDS A(t). Thus, 

N(t) = S(t) + I(t) + D(t) + T(t) + V (t) + A(t).             (1) 

Susceptible individuals are recruited into the population at rate π and become infected at the force of infection λ. Natural mortality 

occurs in all compartments at rate µ, while disease induced mortality occurs in infected classes. Transmission occurs through 

effective contact with infectious individuals in the classes I, D, T, and A, with modification parameters η1, η2, and η3 representing 

relative infectiousness of diagnosed, treated, and AIDS individuals respectively. 

Infected undiagnosed individuals move to the diagnosed class through screening at rate θ, progress to AIDS at rate σ, and 

experience disease-induced death at rate δI. Diagnosed individuals initiate treatment at rate τ and may progress to AIDS at rate α. 

Individuals treated become virally suppressed at rate ω, but may lose suppression at rate ϵ. Treatment failure and disease 

progression may also lead to the AIDS class through parameter ρ. AIDS patients may re-enter treatment at rate ϕ. 

The relationship between compartments in the model is schematically represented in Figure 1. 

 
Figure 1: Model Schematic Diagram. 

 

Although individuals with AIDS often experience reduced sexual activity due to illness, their elevated viral loads may still 

contribute to transmission. Therefore, a reduced but non-zero infectivity parameter is assigned to this class. 

The force of infection is therefore defined as     (                 )         (2) 

where the modification parameters satisfy 0 < ηi < 1 depending on the relative infectiousness, and 0 < η3 < η2 < η1 < 1. 
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Virally suppressed individuals V are excluded from transmission in accordance with the Undetectable = Untransmittable (U=U) 

principle. 

The resulting model is governed by the following system of nonlinear differential equations: 

 (3) 

with initial condition: 

S(0) > 0,I(0) ≥ 0,D(0) ≥ 0,T(0) ≥ 0,V (0) ≥ 0,A(0) ≥ 0. 

We are going to perform qualitative analysis on the model to determine its ability to perform the intended task. 

 
4. Findings 
Here, we present the results of our model analysis, together with their discussions. 

 

4.1 Positivity and Boundedness of Solutions 

For an epidemiological model to be mathematically and biologically well-posed, it is necessary to show that all state variables 

remain non–negative for all time and that the total population is bounded within a feasible region. This guaranties that the model 

does not produce unrealistic negative population sizes or unbounded growth. 

 

4.1.1 Positivity of Solutions  

Theorem 1. Let the initial conditions 

S(0),I(0),D(0),T(0),V (0),A(0) ≥ 0. 

Then all state variables remain positive for all t > 0. 

Proof. We show that for non–negative initial conditions, the system solutions remain non–negative for all t > 0, where all 

parameters are assumed positive. For instance, we consider the Susceptible Population: 

 
Using the differential inequality theorem, 

S(t) ≥ S(0)e
−(λ+µ)t ≥ 0.                                                           (4) 

Thus, the susceptible population remains non-negative. Similar argument applies to the remaining equations, showing that all state 

variables remain non-negative for all time t > 0 whenever the initial conditions are non-negative. Hence, the model preserves 

positivity.   

 

4.1.2 Invariant Region and Boundedness 

Let the total population be:            

N(t) = S + I + D + T + V + A. 

Summing the model equations gives: 

 (5) 

Since disease-induced deaths are non-negative,  

 (6) 

Using the comparison theorem, consider 
           By using the integrating factor method, this linear differential equation has 

solution         (       )                                                      (7) 

As                    Thus,               
The biologically feasible region is given as                                  (8) 

Therefore, all solutions that start in Ω remain in Ω for all t > 0. Hence, the model is mathematically well-posed and 

epidemiologically realistic. 
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4.2 Disease-Free Equilibrium and Basic Reproduction Number 

In this section, we determine the disease-free equilibrium (DFE) of the model and derive the basic reproduction number using the 

next-generation matrix approach of van den Driessche and Watmough (2002). To reflect heterogeneous transmission risks across 

infected classes, the force of infection is defined in (2). 

 

4.2.1 Disease-Free Equilibrium (DFE) 

The disease-free equilibrium corresponds to a state where no infection persists in the population. Setting all infected 

compartments equal to zero:   I = D = T = V = A = 0.    

The susceptible equation becomes     
         .        

At equilibrium,                     
Therefore, the Disease-Free Equilibrium is 

      (            )                                                        (9) 

 

4.2.2 Basic Reproduction Number 

The basic reproduction number, denoted by R0, is defined as the expected number of secondary infections produced b y a single 

infectious individual introduced into a completely susceptible population. The basic reproduction number is computed using th e 

next-generation matrix approach proposed by van den Driessche and Watmough [15]. 

The Infectious Compartments are: (I,D,T,V,A). However, new infections, according to the undetectable = untransmittable 

principle, are generated only by: I, D, T, A. Hence, the New Infection Matrix at disease free - equilibrium, where N0 = S0 and λS = 

β(I + η1D + η2T + η3A) is: 

  [                  ] (10) 

The Jacobian of new infection becomes    [                      ]                                             (11) 

For the Transition Matrix V, we define removal constants: 

G1 = θ+σ+µ+δI,  G2 = τ+α+µ+δD,    G3 = ω+ρ+µ+δT,   G4 = ϵ+µ,  and  G5 = ϕ+µ+δA.                                             (12) 

 The Jacobian of the transition matrix    is 

 .                           (13) 

Rather than explicitly computing V 
−1

, we evaluate the expected number of secondary infections produced along all infection 

pathways. 

Contribution from Undiagnosed Individuals: 

Average infectious period:     , and Contribution: . 

Contribution from Diagnosed Individuals: 

Probability of progression:    ,    Duration: , and Contribution:  . 

Contribution from Treated Individuals: 

Progression probability:  ,     Duration:   ,  and Contribution:  . 

Contribution from AIDS Individuals: 

There are three pathways into AIDS:  . 

Duration in AIDS:  ,  and Contribution:      (                           ) . 

The Basic Reproduction Number is therefore given as:       *                          (                           )+  (14) 

Biologically, this formulation reveals that early screening reduces transmission by shortening the infectious period, effective 

treatment lowers progression into AIDS, preventing treatment failure s ignificantly suppresses R0. Although AIDS patients may 

have reduced contact rates, their contribution remains epidemiologically important. 

 
4.3 Stability Analysis of the Model 

Here, we investigate the local stability of the disease–free equilibrium (DFE) and the endemic equilibrium (EE) of the model 

using the Routh–Hurwitz (RH) stability criterion. 
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4.3.1 Local Stability of the Disease free equilibrium 

Theorem 2. The disease–free equilibrium E0 of system (3) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1. 

Proof.  

Recall that the disease–free equilibrium of system (3) is given by 

                                         
Let    X = (I,D,T,V,A)

T
   denote the vector of infected compartments. Linearizing system (3) about E0 yields   

 
             
where J(E0) is the Jacobian matrix evaluated at the disease–free equilibrium. 

Recall the composite parameters from (12), the Jacobian matrix of the infected subsystem at E0 is 

      [  
                                     ]  

  
                                                       (15) 

The characteristic equation of J(E0) is 

det(λI − J(E0)) = 0,                               (16) 

which yields the fifth degree polynomial, 

λ5 
+ a1λ4 

+ a2λ3 
+ a3λ2 

+ a4λ + a5 = 0,             (17) 

According to the Routh - Hurwitz criterion, all eigenvalues of the characteristic polynomial have negative real parts if and only if 

the following conditions hold:  ai > 0, for i = 1,...,5,   a1a2 > a3,                      and                       
Since all parameters are positive, we have 

a1 > 0,  a2 > 0,  a3 > 0,    a4 > 0.                                  (18) 

Moreover,           

 a5 > 0     ⇐⇒ R0 < 1.                                            (19)  

Thus, all Routh–Hurwitz conditions are satisfied whenever R0 < 1. Hence, by Theorem 2, the model is locally asymptomatically 

stable at the DFE.  

 

4.3.2 Existence of Endemic Equilibrium 

When R0 > 1, the disease–free equilibrium becomes unstable and a unique endemic equilibrium exists. By continuity arguments 

and the Routh–Hurwitz conditions applied at the endemic equilibrium, the endemic equilibrium is locally asymptotically stable 

whenever it exists. 

Assume R0 > 1. Let the endemic equilibrium be 

E  
= (S ,I ,D ,T ,V  ,A ).                                             (20)  

We solve for the endemic equilibrium points E  
as follows:    

From 0 = π − (λ  
+ µ)S , we obtain                                                                         (21) 

Recall that: G1 = θ + σ + µ + δI., then we have:       

                                                                          (22) 

Let                                                                         (23) 

Then,                                                                                      (24) 

By appropriate substitution, we obtain       A  
= kI , where 

 

                                                                                   (25) 

We then determine λ . Using the force of infection,      (                     )                                                (26) 

 

After substitution and simplification, we obtain 

λ  
= µ(R0 − 1).                                                         (27) 

We can see that   R0 > 1 ⇒ unique endemic equilibrium exists . 

 

4.3.3 Local Stability of the Endemic Equilibrium 

The Jacobian evaluated at E  
yields a characteristic polynomial of degree five: 

λ5 
+ a1λ4 

+ a2λ3 
+ a3λ2 

+ a4λ + a5 = 0.                            (28)   

Because all transition parameters are positive when R0 > 1, the Routh–Hurwitz criteria are satisfied.  Thus,   

E  
is locally asymptotically stable whenever it exists. 
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4.3.4 Global Stability of the Disease–Free Equilibrium 

We establish the global asymptotic stability of the disease–free equilibrium (DFE) using the approach of Castillo–Chavez and 

Song (2002), together with the LaSalle Invariance Principle. 

Theorem 3. The disease-free equilibrium E0 of system (3) is globally asymptotically stable whenever R0 < 1 and unstable whenever 

R0 > 1.   

Proof.  

Let 

X = S,      Y = (I,D,T,V,A)
T
. 

The system can be rewritten as 

 
                                                                      (29) 

Recall that the disease-free equilibrium is      (            )     
According to Castillo–Chavez and Song (2002), the disease-free equilibrium is globally asymptotically stable if the following 

conditions hold:   

(H1) The subsystem           (30) 

has a globally asymptotically stable equilibrium.   

(H2) The infected subsystem satisfies  

            ̂       (31) 

Where B = DY G(E0) is an M-matrix and  ̂          
We now check to verify the conditions as follows: 

First Condition (H1): Consider the susceptible equation in the absence of infection:  
         . 

This linear differential equation has solution  

                         Hence,                  
Therefore, the subsystem is globally asymptotically stable, implying that condition (H1) holds.  

Second Condition (H2): Linearizing the infected subsystem at E0  yields 

  [  
                                     ]  

  
                              (32) 

Observe that: all diagonal entries of B are negative, and all off-diagonal entries are non-negative.Thus, matrix B is a Metzler 

matrix and hence an M-matrix. Furthermore, nonlinear infection terms satisfy    

  ̂                                                             (33) 

Therefore, condition (H2) holds. 

Since both conditions (H1) and (H2) are satisfied, it follows that the disease-free equilibrium is globally asymptotically stable 

whenever R0 < 1.  

This implies that when the basic reproduction number is less than unity, the infection cannot invade the population regardles s 

of the initial number of infected individuals. Consequently, strengthening screening , treatment initiation, and viral suppression 

reduces R0 and guarantees eradication of HIV from the population. 

 
4.3.5 Sensitivity Analysis of the Basic Reproduction Number 

To determine the relative importance of epidemiological parameters in disease trans mission, the normalized forward sensitivity 

index of R0 with respect to a parameter p is defined as 

                                                                              (34) 

We are going to check the sensitivity of the basic reproduction number with respect to some key parameters.  

Sensitivity with respect to transmission rate β:  

Given that,   R0 = βΨ,  where Ψ represents the remaining parameter expression, we obtain             .  Hence,                        
Thus, a 10% increase in transmission rate leads to a 10% increase in R0. 

 

Sensitivity with respect to screening rate θ:  

Differentiating R0 with respect to θ gives         *                           (                           )+ 
Therefore                      
Hence increasing screening decreases R0. 

Similarly, Sensitivity with respect to treatment initiation rate τ is obtained thus: 
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Indicating that expanding treatment reduces transmission potential.  By similar computation, we obtain the table of sensitivity 

indices as follows; 

 

Table 3: Normalized sensitivity indices of R0 

Parameter Description Sensitivity Sign 

β Transmission rate            +1 

θ Screening rate Negative 

Τ Treatment initiation Negative 

Σ Progression to AIDS Negative 

Ω Viral suppression rate Negative 

η3 AIDS infectivity Positive 

 

4.3.6 Discussion of Sensitivity Analysis 

The sensitivity analysis of the basic reproduction number R0 provides quantitative insight into the relative importance of 

epidemiological parameters in HIV transmission dynamics. The transmission rate β has a positive sensitivity index equal to unity, 

indicating that R0 changes proportionally with the effective contact rate. Thus, behavioral interventions such as condom use, 

awareness programs, and reduction of risky sexual practices can substantially lower transmission potential. Screening rate θ 
exhibits a negative sensitivity index, implying that increased HIV testing and early diagnosis reduce the number of undiagonized 

infectious individuals and consequently decrease R0. This highlights the importance of expanding voluntary counseling and tes ting 

programs. The treatment initiation rate τ also shows a negative sensitivity index, demonstrating that rapid enrollment of diagnosed 

individuals into treatment programs reduces disease spread. Similarly, the viral suppression rate ω negatively influences R0, 

emphasizing the epidemiological significance of treatment adherence and sustained viral suppression. The infectivity modifica tion 

parameter of AIDS individuals η3 has a positive sensitivity index, suggesting that increased infectiousness among late -stage 

patients substantially increases the transmission potential. This result underscores the need for early treatment initiation before 

progression to advanced disease stages. Therefore, the sensitivity results indicate that prevention strategies focusin g on reducing 

transmission probability, expanding early screening, improving treatment uptake, and maintaining viral suppression are the mo st 

effective measures for lowering the reproduction number and controlling the epidemic. 

 
5. Conclusion and Recommendations  
In this study, a deterministic compartmental model for HIV transmission dynamics incorporating screening, diagnosis, treatmen t, 

viral suppression, and AIDS progression was formulated and rigorously analyzed. The model accounts for differential infe ctivity 

among undiagnosed, diagnosed, treated, and AIDS individuals, thereby providing a realistic representation of HIV 

epidemiological processes. The qualitative analysis established the fundamental mathematical properties of the model. It was 

shown that all solutions of the system remain positive for all time and that the feasible epidemiological region is positively 

invariant, ensuring biological well-posedness of the model. The disease-free equilibrium was derived and analyzed, and the basic 

reproduction number R0 was obtained using the next-generation matrix approach. Local and global stability analysis demonstrated 

that the disease-free equilibrium is locally and globally asymptotically stable whenever R0 < 1, indicating that the infection can be 

eliminated from the population if transmission potential is sufficiently reduced. Conversely, when R0 > 1, the system admits an 

endemic equilibrium corresponding to persistent HIV transmission. Sensitivity analysis of the reproduction number revealed th at 

the effective contact rate and infectivity of advanced-stage individuals contribute positively to disease transmission, while 

screening, treatment initiation, and viral suppression parameters contribute negatively to R0. These findings highlight the critical 

importance of early diagnosis, rapid treatment enrollment, sustained adherence to therapy, and prevention of disease progression 

in reducing the long-term transmission potential of HIV. Altogether, the theoretical results emphasize that integrated intervent ion 

strategies combining expanded screening programs, timely treatment initiation, improved treatment adherence, and strengthened  

prevention measures are essential for achieving long-term control and eventual elimination of HIV transmission, and hence 

recommended. The analytical framework developed in this study provides a useful foundation for future investigations involving 

optimal control, parameter estimation, and policy evaluation in HIV epidemic management. 
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