

Modeling the Spread of Leishmaniasis using Stochastic Differential Equation

Salih Abdulwahab Ebosetale¹ & Agatha Abokwara²

¹Department of Mathematics, Joseph Sarwuan Tarka University Makurdi

²Department of Mathematics, Joseph Sarwuan Tarka University Makurdi

ARTICLE INFORMATION

Article history:

Published: February 2026

Keywords:

Leishmaniasis
 Stochastic Differential equations
 Epidemiological Modeling
 Euler–Maruyama Method
 Stochastic Runge–Kutta Method.

ABSTRACT

Leishmaniasis is a vector-borne infectious disease transmitted through the bite of infected female sandflies, posing significant public health challenges in many tropical and subtropical regions. In this study, we develop and analyze a stochastic differential equation (SDE) model for the transmission dynamics of Leishmaniasis to capture the inherent randomness and environmental fluctuations that influence disease spread. Starting from a deterministic compartmental model consisting of five interacting populations: susceptible humans, latent humans, infected humans, susceptible sandflies, and infected sandflies. We incorporate stochasticity by applying the procedure proposed by Allen et al. (2008). The resulting SDE was numerically solved and simulated using both the Euler–Maruyama and Stochastic Runge–Kutta methods using python to examine the dynamic behavior of the disease under uncertainty.

1. Introduction

Leishmaniasis is a vector-borne disease that consists of both the host and vector in its transmission and is caused by the protozoan parasite Leishmania. This disease is one of the major tropical and subtropical diseases and is transmitted by the bite of a sand fly, specifically the female sand fly. Leishmaniasis has been classified as an endemic across the world, affecting Asia, Africa, the Americas, and the Mediterranean region. Numerous environmental factors affect the distribution and dispersion of this disease (Desjeux 2004 and Shweta Khandibharad and Shailza Singh, 2023).

Understanding the geographical distribution and high-risk areas of diseases is a fundamental requirement for effective management, decision-making, and health system planning in any country. Today, Geographic Information Systems (GIS) serve as an important tool in health-related programs, allowing for cost-effective disease mapping, strategic planning, and analysis of factors influencing disease patterns. GIS also provides valuable data on meteorological and ecological conditions necessary for the survival of specific pathogens and their vectors. Consequently, the use of GIS can help predict seasonal variations in diseases by linking them to weather patterns and environmental conditions in different regions. (Yang G-J, Vounatsou P, and Xiao-Nong Z, 2005).

The life cycle of Leishmania consists of two distinct stages: one in the female sandfly and the other in the mammalian host (such as humans or dogs). When an infected sandfly takes a blood meal, it injects saliva that prevents clotting and simultaneously releases metacyclic promastigotes at the bite site. These promastigotes are slender, elongated, motile, and extracellular. Neutrophils are the first immune cells to arrive at the site, engulfing the promastigotes. However, because neutrophils are short-lived and undergo apoptosis, they are thought to act as “Trojan horses,” providing the parasites with a pathway to enter macrophages while evading immune activation. Inside macrophages, the promastigotes transform into amastigotes, which are small, round, and non-motile, and begin multiplying before spreading to nearby tissues. When another sandfly feeds on an infected host, it ingests macrophages containing amastigotes. These cells rupture within the sandfly’s midgut, releasing the parasites, which then develop further, migrate to the proboscis, and become ready to infect a new host. (Ty et al. 2019).

Traditionally, many mathematical models in disease epidemiology have relied on deterministic ordinary differential equations (ODEs), which do not capture the inherent uncertainties in disease transmission. Such uncertainties may arise from assumptions regarding disease parameters, population heterogeneity, behavioral dynamics, intervention strategies, external influences, and unforeseen events. In contrast, stochastic models explicitly incorporate the randomness associated with transmission processes, reflecting the probabilistic nature of events such as infection and recovery. This allows for a more realistic representation of variability and uncertainty in disease spread. While deterministic ODE models are suitable for large populations, stochastic models are particularly advantageous in describing dynamics within small populations or rare events (Ogwuche, 2023).

In this study, we address these uncertainties by introducing random perturbations modeled as a Wiener process, thereby transforming the deterministic ODE framework into a system of stochastic differential equations (SDEs). Specifically, we begin with the deterministic ODE model for Leishmaniasis and subsequently formulate its stochastic counterpart to better capture the dynamics of disease transmission.

2. Literature Review

Several works have been done on stochastic epidemic models. Ogwuche, Iortyer, Emonyi and Ali M. (2023) formulated an SDE model for the transmission of Tuberculosis (TB). In their work, a deterministic model for the transmission of TB was presented

and then transformed into a system of stochastic differential equation model. The Euler- Maruyama method was used for the simulation.

Tawfiqullah Ayoubi and Ahmad Shahed (2024) investigated an algorithm of stochastic Runge -Kutta method for numerical solution of stochastic differential equations (SDEs). Because, most SDEs do not have analytical solution. Hence, numerical solution is required to estimate the numerical solution of SDEs. In addition, they applied this algorithm for numerical solution of Logistic Stochastic Differential Equation for cell concentration

Allen and Linda (2017) presented a work on stochastic epidemic models, emphasizing their formulation, numerical simulation, and analytical exploration. The study developed models based on continuous -time Markov chains and stochastic differential equations, using well-known examples to illustrate key concepts. Furthermore, the authors also discussed analytical techniques for approximating the probability of disease outbreaks, thereby providing valuable insights into the application of stochastic methods in epidemiology.

Yoshihiro Maki and Hideo Hirose (2013) proposed a SDE version of the SIR simulation model with application to SARS (Severe Acute Respiratory Syndrome) case in 2003 in Hong Kong.

Ogwuche, O. I. and Emonyi, T. A formulated a stochastic model for the transmission of Lassa fever. In their work, they attempted to demonstrate the impact of uncertainties in the mode of transmission of Lassa fever by subjecting the dynamics to some white noise modeled by the Brownian motion as a Wiener process. An existing deterministic model involving the Susceptible, Exposed, Infected and Recovered (SEIR) individuals were transformed into a stochastic differential equation model by applying the procedure proposed by Allen et al (2008).

3. Methodology

The model formulated is based on the following assumptions:

- Susceptible individuals has equal chances to be infected when contact with by the infectious individuals is established;
- Recovered individuals can be re-infected;
- Leishmaniasis induced death can occur in the infected class.

Based on the assumptions above, the following parameters were use as shown in Table 1.

3.1 Deterministic Model of Transmission of Leishmaniasis

The dynamics for the transmission of leishmaniasis is illustrated by Figure 1.

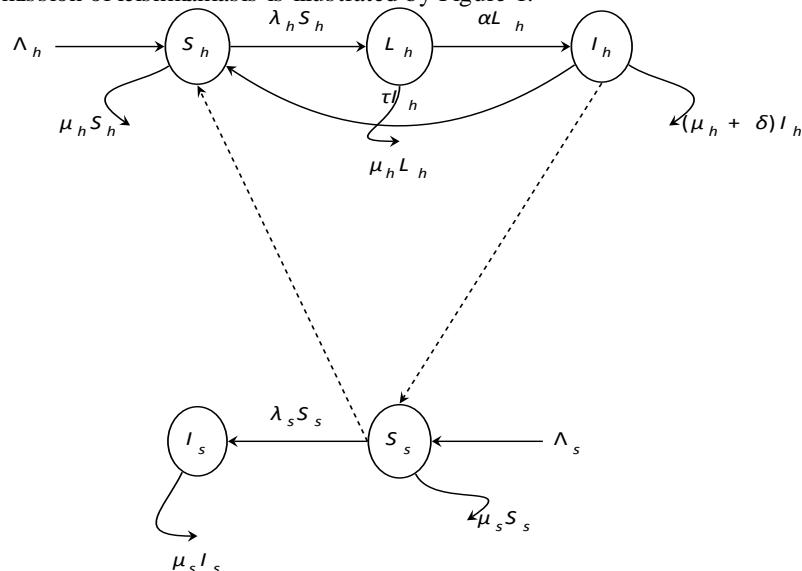


Figure 1: Schematic Diagram of the Leishmaniasis Model

3.2 Model Equations

The assumptions in section 3.1 and the model flowchart together lead to the following system of ordinary differential equations which describe the transmission dynamics of the disease as:

Parameter	Epidemiological interpretation
$S_h(t)$	Susceptible human population at time t
$L_h(t)$	Latent human population at time t
$I_h(t)$	Infected human population at time t
$S_s(t)$	Susceptible and – fly population at time t
$I_s(t)$	Infected and – fly population at time t
λ_h	Recruitment rate for human population
λ_s	Recruitment rate for sand – fly population

τ	Disease recovery rate for human class
α	Movement rate from latent human class to infected human class
μ_h	Mortality rate for human population
μ_s	Mortality rate for sand – fly population
β_1	Disease transmission rate for sand – fly population
β_2	Disease transmission rate for human population
δ	Disease induced death rate for human class

Table 1: Parameters of the model

$$\begin{cases} \frac{dS_h}{dt} = \Lambda_h - \lambda_h S_h - \mu_h S_h + \tau I_h \\ \frac{dL_h}{dt} = \lambda_h S_h - (\mu_h + \alpha) L_h, \\ \frac{dI_h}{dt} = \alpha L_h - (\mu_h + \delta + \tau) I_h, \\ \frac{dS_s}{dt} = \Lambda_s - \lambda_s S_s - \mu_s S_s, \\ \frac{dI_s}{dt} = \lambda_s S_s - \mu_s I_s, \end{cases} \quad (1)$$

subject to initial conditions

$$S_h(0) > 0, \quad L_h(0) \geq 0, \quad I_h(0) \geq 0, \quad S_s(0) > 0, \quad I_s(0) \geq 0,$$

where

$$\lambda_h = \frac{\beta_1 I_s}{N}, \quad \lambda_s = \frac{\beta_2 I_h}{N}.$$

The system (1) is assumed to have positive model parameters.

3.3 Disease-free Equilibrium State

Disease-free equilibrium points are steady-state solutions where there is no disease in the population. At equilibrium states the rate of change of the state varies with respect to time is Zero. That is the infected compartment of the model is equal to zero. Thus, $L_h = I_h = I_s = 0$. Then,

$$E_0 = (S_h, L_h, I_h, S_s, I_s) = \left(\frac{h}{\mu_h}, 0, 0, \frac{s}{\mu_s}, 0 \right)_\lambda$$

3.4 Basic Reproduction Number

The basic reproduction number, denoted by R_0 , represents the average number of secondary infections generated by a single infectious individual (e.g., a rodent or human) in a fully susceptible population.

If $R_0 = 1$, the disease is at a critical threshold where each case leads to one new case on average. This indicates that the infection is neither increasing nor decreasing in the population.

If $R_0 < 1$, it implies that an infected individual, on average, causes less than one new infection during their infectious period. In this case, the disease cannot sustain itself in the population and can potentially be eradicated.

Conversely, if $R_0 > 1$, it implies that each infected individual produces more than one new infection on average. As a result, the disease will spread within the population, making the disease-free equilibrium (DFE) unstable and invasion inevitable.

To compute R_0 for our model, we adopt the next-generation matrix method introduced by van den Driessche and Watmough (2002). The next-generation matrix G is constructed using two components: F and V^{-1} , defined as follows:

$$F = \left[\frac{\partial \mathcal{F}_i(X_0)}{\partial x_j} \right] \quad (2)$$

$$V = \left[\frac{\partial \mathcal{V}_i(X_0)}{\partial x_j} \right] \quad (3)$$

Where

\mathcal{F}_i =The new infections

\mathcal{V}_i =Transfers of infections from one compartment to another

X_0 = The disease free equilibrium

R_0 = The dominant eigenvalue of the matrix

$G= FV^{-1}$

The infection classes are L_h , I_h and I_s . Hence,

$$F_i = \begin{bmatrix} \frac{\beta_1 I_s S_h}{N} \\ 0 \\ \frac{\beta_2 I_h S_s}{N} \end{bmatrix}$$

$$V_i = \begin{bmatrix} (\mu_h + \alpha)L_h \\ -\alpha L_h + (\mu_h + \delta + \tau)I_h \\ \mu_s I_s \end{bmatrix}$$

and using equation (2) and (3) we obtained:

$$F = \begin{bmatrix} 0 & 0 & \beta_1 \\ 0 & 0 & 0 \\ 0 & \frac{\beta_2 \lambda_s \mu_h}{\mu_s \lambda_h} & 0 \end{bmatrix}$$

and

$$V = \begin{bmatrix} \mu_h + \alpha & 0 & 0 \\ -\alpha & \tau + \mu_h + \delta & 0 \\ 0 & 0 & \mu_s \end{bmatrix}$$

Therefore,

$$V^{-1} = \begin{bmatrix} \frac{1}{\mu_h + \alpha} & 0 & 0 \\ \frac{\alpha}{(\mu_h + \alpha)(\tau + \mu_h + \delta)} & \frac{1}{\tau + \mu_h + \delta} & 0 \\ 0 & 0 & \frac{1}{\mu_s} \end{bmatrix}$$

The product of FV^{-1} is

$$FV^{-1} = \begin{bmatrix} 0 & 0 & \frac{\beta_1}{\mu_s} \\ 0 & 0 & 0 \\ \frac{\beta_2 \lambda_s \mu_h \alpha}{\mu_s \lambda_h (\mu_h + \alpha)(\tau + \mu_h + \delta)} & \frac{\beta_2 \lambda_s \mu_h}{\mu_s \lambda_h (\tau + \mu_h + \delta)} & 0 \end{bmatrix}$$

The dominant eigenvalue of the matrix is

$$R_0 = \sqrt{\frac{\beta_1 \beta_2 \mu_s \lambda_s \alpha}{\lambda_h (\mu_h^2 + \mu_h \alpha + \mu_h \delta + \mu_h \tau + \alpha \delta + \alpha \tau)}}$$

3.5 Formulation of the Stochastic Model for the Transmission of Leishmaniasis

Using the first modeling procedure developed by Allen et al (2008) we derived the Stochastic model for the deterministic model of the Ordinary Differential Equation in (1).

The drift vector is defined as:

$$\vec{F} = \sum_{j=1} p_j \vec{\lambda}_j$$

where λ and p_j are the random changes and the transition probabilities are defined in the table below:

Change	Probability	Event
$[10000]^T$	$P_1 = \Lambda_h \Delta t$	Birth of Susceptible human
$[-10000]^T$	$P_2 = \mu_h S_h \Delta t$	Death of Susceptible human
$[-11000]^T$	$P_3 = \beta_1 I_s S_h \Delta t$	Susceptible becomes Latent
$[0 - 1000]^T$	$P_4 = \mu_h L_h \Delta t$	Death of Latent human
$[0 - 1100]^T$	$P_5 = \alpha L_h \Delta t$	latent becomes infected
$[00 - 100]^T$	$P_6 = (\mu_h + \delta) I_h \Delta t$	Death of infected human
$[10 - 100]^T$	$P_7 = \tau I_h \Delta t$	Infected human becomes susceptible
$[00010]^T$	$P_8 = \Lambda_s \Delta t$	Birth of susceptible sand fly
$[000 - 10]^T$	$P_9 = \mu_s S_s \Delta t$	Death of susceptible sand fly
$[000 - 11]^T$	$P_{10} = \beta_2 I_h S_s \Delta t$	Susceptible sand fly becomes infected
$[0000 - 1]^T$	$P_{11} = \mu_s I_s \Delta t$	infected sand fly dies naturally

$$\mathcal{F} = p_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + p_2 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + p_3 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + p_4 \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + p_5 \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + p_6 \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} + p_7 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + p_8 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + p_9 \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} + p_{10} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} + p_{11} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\vec{F} = \begin{bmatrix} \Lambda_h \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -\mu_h S_h \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -\beta_1 I_s \\ \beta_1 I_s \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -\mu_h L_h \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -\alpha L_h \\ \alpha L_h \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \tau I_h \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -\mu_s S_s \\ -\beta_2 I_h \\ \beta_2 I_h \\ 0 \\ -\mu_s I_s \end{bmatrix}$$

$$\vec{F} = \begin{bmatrix} \Lambda_h - \mu_h S_h - \beta_1 I_s + \tau I_h \\ \beta_1 I_s - \mu_h L_h - \alpha L_h \\ \alpha L_h - (\mu_h + \delta) I_h - \tau I_h \\ \Lambda_s - \mu_s S_s - \beta_2 I_h \\ \beta_2 I_h - \mu_s I_s \end{bmatrix}$$

Given $\Lambda_h = \frac{\beta_1 I_s}{N}$ and $\Lambda_s = \frac{\beta_2 I_h}{N}$, the drift vector \vec{F} is:

$$\vec{F} = \begin{bmatrix} \tau I_h - \mu_h S_h \\ \beta_1 I_s - \mu_h L_h - \alpha L_h \\ \alpha L_h - (\mu_h + \delta) I_h - \tau I_h \\ -\mu_s S_s \\ \beta_2 I_h - \mu_s I_s \end{bmatrix}$$

Similarly, the covariance matrix which is the volatility coefficient is defined as:

$$V = \sum_{j=1} p_j \vec{\lambda}_j (\lambda_j)^T$$

$$V = p_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} [1 \ 0 \ 0 \ 0 \ 0] + p_2 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} [-1 \ 0 \ 0 \ 0 \ 0] + p_3 \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} [-1 \ 1 \ 0 \ 0 \ 0] + p_4 \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} [0 \ -1 \ 0 \ 0 \ 0] + p_5 \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} [0 \ -1 \ 1 \ 0 \ 0] \\ + p_6 \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} [0 \ 0 \ -1 \ 0 \ 0] + p_7 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} [1 \ 0 \ -1 \ 0 \ 0] + p_8 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} [0 \ 0 \ 0 \ 1 \ 0] + p_9 \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 0 \end{bmatrix} [0 \ 0 \ 0 \ -1 \ 0] \\ + p_{10} \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix} [0 \ 0 \ 0 \ -1 \ 1] + p_{11} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{bmatrix} [0 \ 0 \ 0 \ 0 \ -1]$$

Multiplying the covariance matrix we have:

$$V = \begin{bmatrix} \tau I_h + 2\beta_1 I_s + \mu_h S_h & -\beta_1 I_s & -\tau I_h & 0 & 0 \\ -\beta_1 I_s & \alpha L_h + \beta_1 I_s + \mu_h L_h & -\alpha L_h & 0 & 0 \\ -\tau I_h & -\alpha L_h & \alpha L_h + (\mu_h + \delta) I_h + \tau I_h & 0 & 0 \\ 0 & 0 & 0 & 2\beta_2 I_h + \mu_s S_s & -\beta_2 I_h \\ 0 & 0 & 0 & -\beta_2 I_h & \beta_2 I_h + \mu_s I_s \end{bmatrix}$$

The resulting stochastic differential equation is given by :

$$dX(t) = \vec{F}(t, X(t))dt + V(t, X(t))dW(t)$$

$$X(0) = [X_1(0), X_2(0), X_3(0), X_4(0), X_5(0)]^T$$

3.6 Numerical Simulation

The Euler-Maruyama and Stochastic Runge-Kutta methods for of SDEs were used for the simulation. These methods are numerical schemes used for approximating the solutions of stochastic differential equations (SDEs).

3.6.1 Euler-Maruyama Method

The Euler-Ito SDE-Maruyama method is used for the simulation. For

$$dX_t = a(t, X_t)dt + b(t, X_t)dW_t$$

the Euler-Maruyama method is given by:

$$Y_{n+1} = Y_n + a(\tau_n, Y_n)(\tau_{n+1} - \tau_n) + b(\tau_n, Y_n)(W_{\tau_{n+1}} - W_{\tau_n})$$

According to Kloeden and Platen (2007), one of the simplest time-discrete approximations of an Ito[^] process is the Euler approximation, or the Euler-Maruyama approximation as it is sometimes called.

Consider an Ito[^]-Maruyama process $X = \{X_t, t_0 \leq t \leq T\}$ satisfying the scalar stochastic differential equation:

$$dX_t = a(t, X_t)dt + b(t, X_t)dW_t$$

On $t_0 \leq t \leq T$, with the initial value $X_{t_0} = X_0$, and for a given discretization

$$\tau_0 = \tau_0 < \tau_1 < \dots < \tau_n < \dots < \tau_N = T$$

of the time interval $[t_0, T]$, an Euler approximation is a continuous-time stochastic process

$$Y = \{Y(t), t_0 \leq t \leq T\}$$

Satisfying the iterative scheme:

$$Y_{n+1} = Y_n + a(\tau_n, Y_n)(\tau_{n+1} - \tau_n) + b(\tau_n, Y_n)(W_{\tau_{n+1}} - W_{\tau_n})$$

In the 1-dimensional case, $d = m = 1$, the Euler scheme has the form

$$Y_{n+1} = Y_n + a\Delta + b\Delta W$$

where

$$\Delta = \tau_{n+1} - \tau_n = I(0) = J(0)$$

is the length of the time discretization subinterval $[\tau_n, \tau_{n+1}]$, and

$$\Delta W = W_{\tau_{n+1}} - W_{\tau_n}$$

For $k = 1, \dots, d$, the scheme can be written as

$$Y_{n+1}^k = Y_n^k + a^k \Delta + b^k \Delta W,$$

where the drift and diffusion coefficients are d -dimensional vectors

$$a = (a_1, \dots, a_d), \quad b = (b_1, \dots, b_d).$$

For the general multi-dimensional case with $d, m = 1, 2, \dots$, the k -th component of the Euler scheme has the form

$$Y_{n+1}^k = Y_n^k + a^k \Delta + \sum_{j=1}^m b_{kj} \Delta W_j$$

where

$$\Delta W_j = W_{\tau_{n+1}}^j - W_{\tau_n}^j = I(j) = J(j)$$

is the $N(0, \Delta)$ -distributed increment of the j -th component of the m -dimensional standard Wiener process W on $[\tau_n, \tau_{n+1}]$, and ΔW_{j1} and ΔW_{j2} are independent for $j_1 \neq j_2$. The diffusion coefficient

$$b = [b_{kj}]$$

is a $d \times m$ matrix.

3.6.2 Stochastic Runge-Kutta Method

Stochastic Runge-Kutta (SRK) method. This method was introduced by Rumellin (1982). SRK was developed based on the increment of Wiener process,

$$J_1(t) = \int_{t_n}^{t_{n+1}} dW(t)$$

The general form of SRK for numerical approximation SDEs is:

$$Y_t = Y_n + \Delta \sum_{i=1}^s \alpha_{i,j} f(Y_j^n) + J_1 \sum_{i=1}^s b_{i,j} g(Y_j), \quad i = 1, 2, \dots, s$$

$$Y_{n+1} = Y_n + \Delta \sum_{i=1}^s \alpha_{i,j} f(Y_i^n) + J_1 \sum_{i=1}^s \gamma_i g(Y_i),$$

where $A = (a_{i,j})_{s \times s}$ and $B = (b_{i,j})_{s \times s}$ are matrices of real element, $\alpha^T = (\alpha_1, \dots, \alpha_s)$ and $\gamma^T = (\gamma_1, \dots, \gamma_s)$ are row vectors.

4. Numerical Implementation and Results

The resulting model in equation (1) was simulated using the Euler-Maruyama and Stochastic Runge-kutta methods using the parameter and initial condition:

Parameter	Value
τ	0.2
α	0.1
μ_h	0.01
μ_s	0.02
β_1	0.05
β_2	0.04
δ	0.1

Table 3: Table of value for the parameters

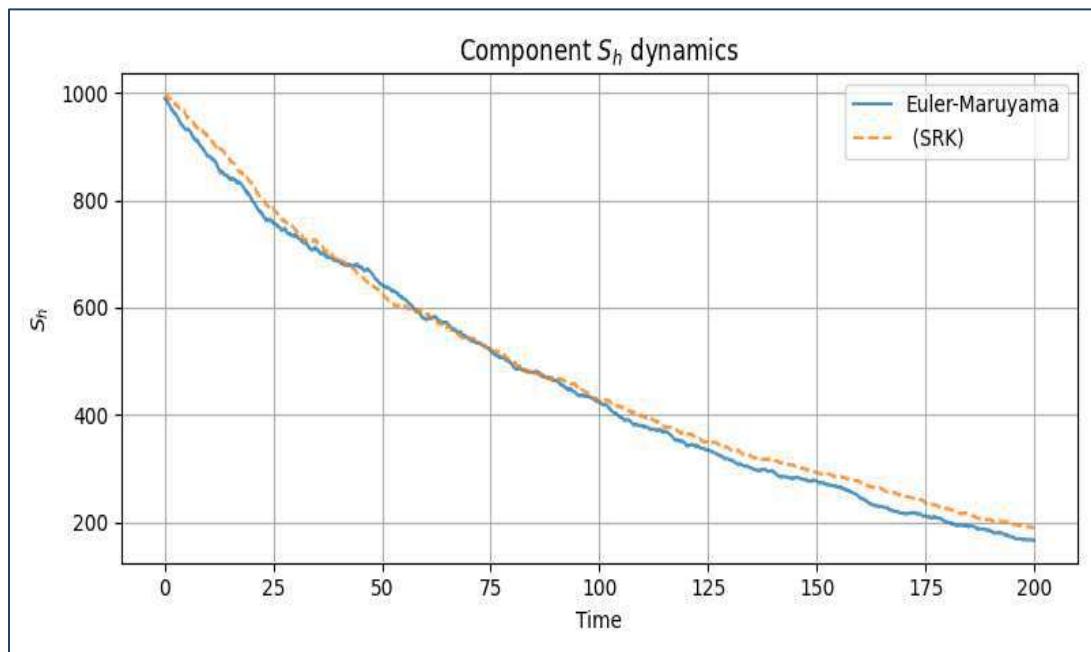


Figure 2: susceptible human

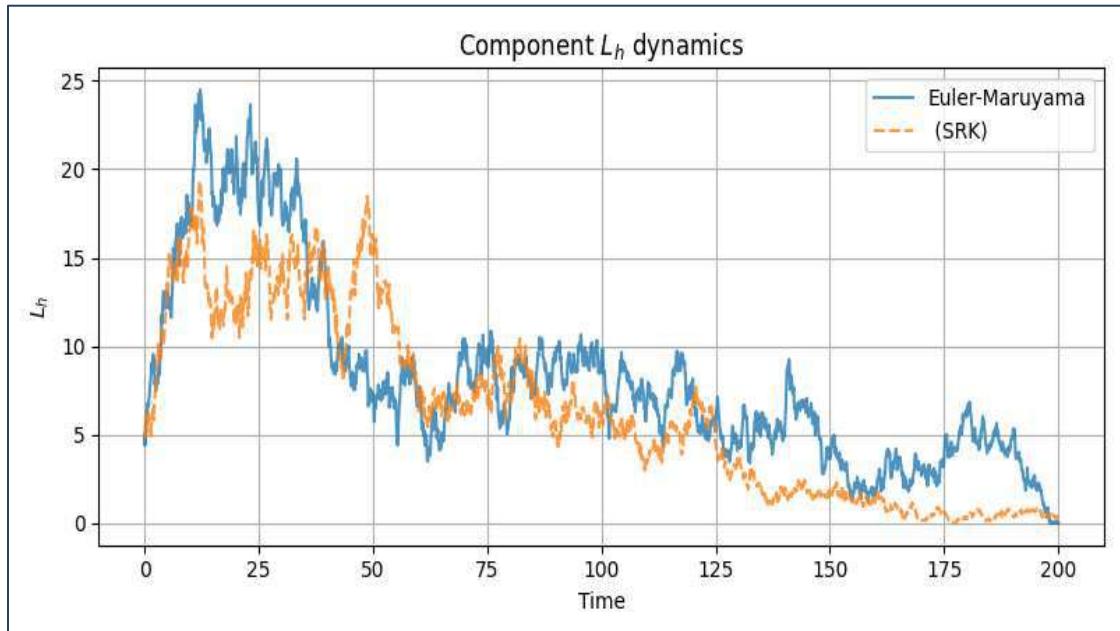


Figure 3: latent human

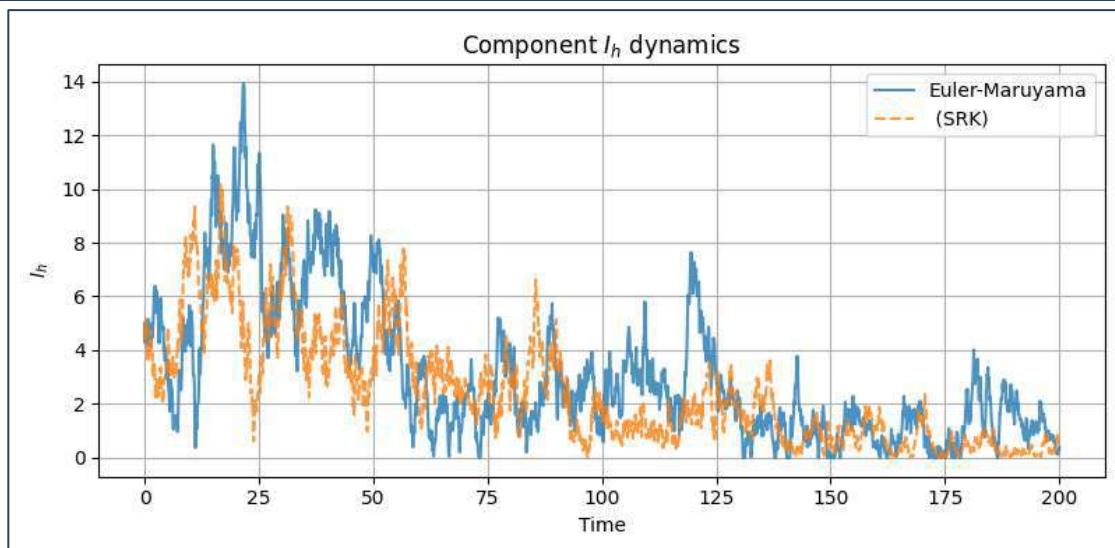


Figure 4: infected human

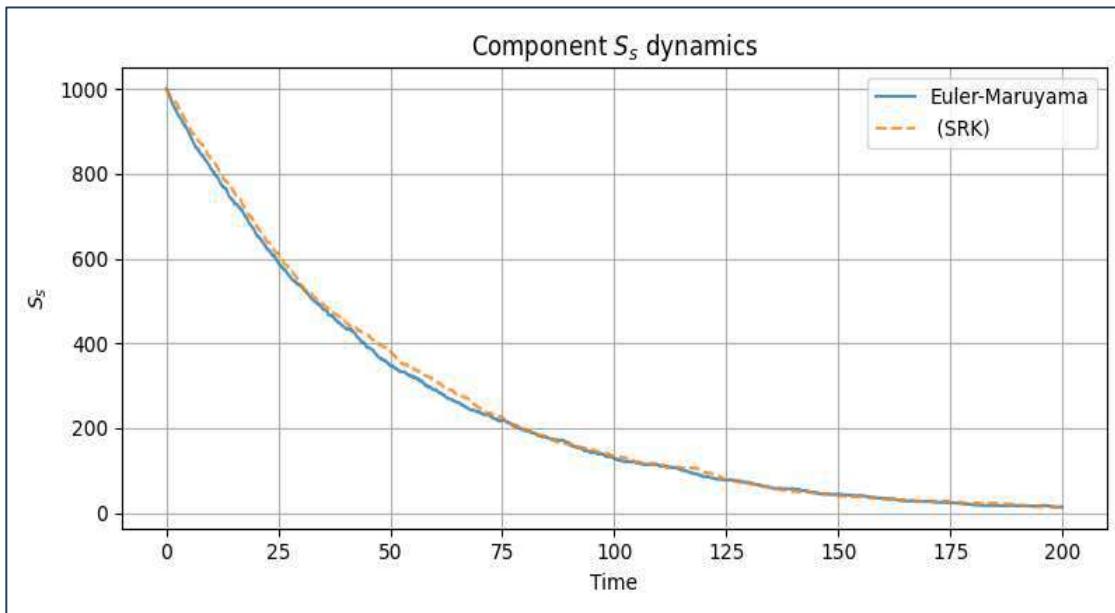


Figure 5: Susceptible sun-fly

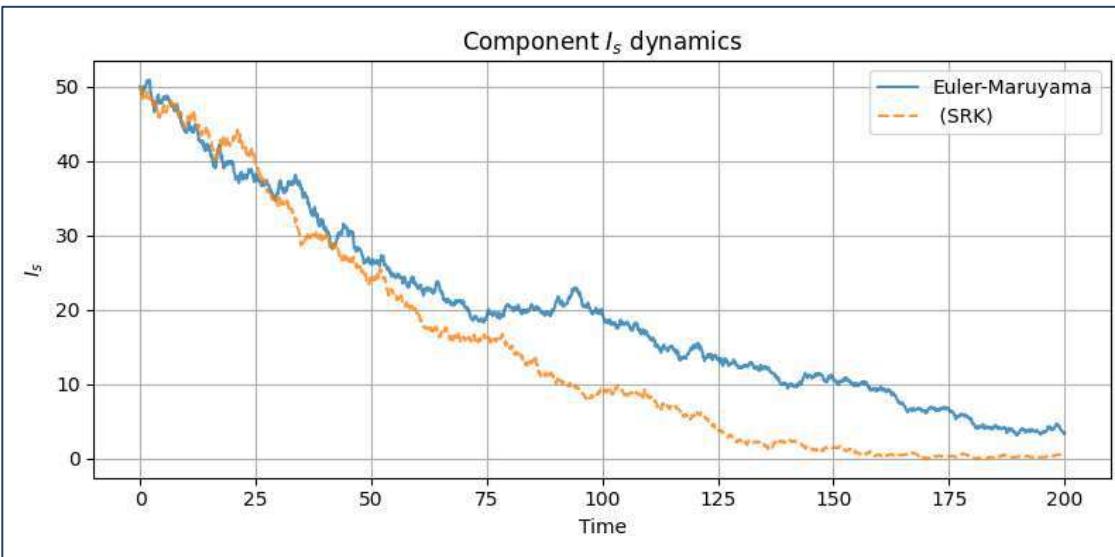


Figure 6: Infected sun-fly

5. Conclusion and Recommendations

The results demonstrate that while both methods can capture the basic epidemic dynamics, the Runge-Kutta method is significantly more accurate for moderate step sizes. Euler's method shows qualitative agreement but accumulates numerical error with larger step sizes. Runge-Kutta provides more stable and accurate solutions.

Numerical methods are essential tools for simulating complex nonlinear systems like the Leishmaniasis model. The choice of method affects the accuracy and stability of the solution. For most applications, the Runge-Kutta method provides a good balance between computational cost and precision.

References

- [1] Allen. E. J. Allen. L.J.S., Arciniega, A. and Greenwood, P.E. (2008). Construction of Equivalent Stochastic Differential Equation Models. *Stochastic Analysis Application*. 26(2):274- 297.
- [2] Allen. E. J and Linda, J.S. (2017). A Primer on Stochastic Epidemic models: Formulation, Numerical Simulation and Analysis. *Journal of Infectious Disease Modeling*, 2: 128-142.
- [3] Desjeux P. Leishmaniasis: current situation and new perspectives. *Comparative immunology, microbiology and infectious diseases*. 2004; 27(5): 305-18
- [4] Ogwuche, Otache Innocent, Iortyer, Ephraim Kator, Emonyi, Alex, Ali, Michael. A stochastic Differential Equation (SDE) Based for the Spread of Tuberculosis. *FUDMA Journal of Sciences (FJS)* Vol. 7 No. 5, October, 2023, pp 9 - 17 DOI: <https://doi.org/10.33003/fjs-2023-0705-1990>
- [5] Ogwuche, O. I. and Emonyi, T. A. Deterministic and Stochastic model for the Transmission of Lassa Fever. *FUDMA Journal of Sciences (FJS)* Vol. 8 No. 1, February, 2024, pp 11 - 18 DOI: <https://doi.org/10.33003/fjs-2024-0801-224615>
- [6] Shweta Khandibharad1 and Shailza Singh Immuno-metabolic signaling in leishmaniasis: insights gained from mathematical modeling. *Bioinformatics Advances*, 2023, 00, vbad125 <https://doi.org/10.1093/vbad125.bioadv>
- [7] Tawfiqullah Ayoubi and Ahmad shahed (2024). Algorithm of S-stage Stochastic Runge-kutta Method for Numerical Solution of Stochastic Differential Equations. *Znanstvena misel journal №96*.
- [8] Ty MC, Loke P, Alberola J. Immuno-metabolic profile of human macrophages after leishmania and Trypanosoma cruzi infection. *PLoS One* 2019;14:e0225588.
- [9] Yoshihiro Maki and Hideo Hirose (2013). Infectious Disease Spread Analysis Using Stochastic Differential Equations for SIR Model. *4th International Conference on Intelligent Systems, Modelling and Simulation*.
- [10] Yang G-J, Vounatsou P, and Xiao-Nong Z. A review of geographic information system and remote sensing with applications to the epidemiology and control of schistosomiasis in China. *Acta tropica*. 2005; 96(2): 11729