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ARTICLE INFORMATION ABSTRACT
Avrticle history: Leishmaniasis is a vector-borne infectious disease transmitted through the bite of
Published: February 2026 infected female sandflies, posing significant public health challenges in many tropical
and subtropical regions. In this study, we develop and analyze a stochastic differential
Keywor ds: equation (SDE) model for the transmission dynamics of Leishmaniasis to capture the
Leishmaniasis inherent randomness and environmental fluctuations that influence disease spread.
Stochastic Differential quations Starting from a deterministic compartmental model consisting of five interacting
Epidemiological Modeling populations: susceptible humans, latent humans, infected humans, susceptible
Euler—Maruyama Method sandflies, and infected sandflies. We incorporate stochasticity by applying the
Stochastic Runge—Kutta Method. procedure proposed by Allen et al. (2008). The resulting SDE was numerically solved

and simulated using both the Euler—Maruyama and Stochastic Runge—Kutta methods
using python to examine the dynamic behavior of the disease under uncertainty.

1. Introduction

Leishmaniasis is a vector borne diseases that consist of both the host and vector in its transmission and caused by the protozoan
parasite Leishmania. This disease is one of the major tropical and subtropical diseases and transmitted by the bite of a sand fly
specifically the female sand fly. Leishmaniasis has been classified as an endemic across the world affecting Asia, Africa, the
Americas, and the Mediterranean region. Numerous environmental factors affect the distribution and dispersion of this disease
(Desjeux 2004 and Shweta Khandibharadl and Shailza Singh, 2023).

Understanding the geographical distribution and high-risk areas of diseases is a fundamental requirement for effective
management, decision-making, and health system planning in any country. Today, Geographic Information Syste ms (GIS) serve as
an important tool in health-related programs, allowing for cost-effective disease mapping, strategic planning, and analysis of
factors influencing disease patterns. GIS also provides valuable data on meteorological and ecological conditio ns necessary for the
survival of specific pathogens and their vectors. Consequently, the use of GIS can help predict seasonal variations in diseas es by
linking them to weather patterns and environmental conditions in different regions. (Yang G-J, Vounatsou P, and Xiao-Nong Z ,
2005).

The life cycle of Leishmania consists of two distinct stages: one in the female sandfly and the other in the mammalian host (such
as humans or dogs). When an infected sandfly takes a blood meal, it injects saliva that prevents clotting and simultaneously
releases metacyclic promastigotes at the bite site. These promastigotes are slender, elongated, motile, and extracellular.
Neutrophils are the first immune cells to arrive at the site, engulfing the promastigotes. However, becau se neutrophils are short-
lived and undergo apoptosis, they are thought to act as “Trojan horses,” providing the parasites with a pathway to enter
macrophages while evading immune activation. Inside macrophages, the promastigotes transform into amastigotes, which are
small, round, and non-motile, and begin multiplying before spreading to nearby tissues. When another sand-fly feeds on an
infected host, it ingests macrophages containing amastigotes. These cells rupture within the sand-fly’s midgut, releasing the
parasites, which then develop further, migrate to the proboscis, and become ready to infect a new host. (Ty et al. 2019).
Traditionally, many mathematical models in disease epidemiology have relied on deterministic ordinary differential equations
(ODEs), which do not capture the inherent uncertainties in disease transmission. Such uncertainties may arise from assumptions
regarding disease parameters, population heterogeneity, behavioral dynamics, intervention strategies, external influences, and
unforeseen events. In contrast, stochastic models explicitly incorporate the randomness associated with transmission processes,
reflecting the probabilistic nature of events such as infection and recovery. This allows for a more realistic representation of
variability and uncertainty in disease spread. While deterministic ODE models are suitable for large populations, stochastic models
are particularly advantageous in describing dynamics within small populations or rare events (Ogwuche, 2023).

In this study, we address these uncertainties by introducing random perturbations modeled as a Wiener process, thereby
transforming the deterministic ODE framework into a system of stochastic differential equations (SDEs). Specifically, we begin
with the deterministic ODE model for Leishmaniasis and subsequently formulate its stochastic counterpart to better capture the
dynamics of disease transmission.

2. Literature Review
Several works have been done on stochastic epidemic models. Ogwuche, lortyer, Emonyi and Ali M. (2023) formulated an SDE
model for the transmission of Tuberculosis (TB). In their work, a deterministic model for the transmission of TB was presented
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and then transformed into a system of stochastic differential equation model. The Euler- Maruyama method was used for the
simulation.

Tawfiqullah Ayoubi and Ahmad shahed (2024) investigated an algorithm of stochastic Runge -Kutta method for numerical solution
of stochastic differential equations (SDEs). Because, most SDEs do not have analytical solution. Hence, numerical solution is
required to estimate the numerical solution of SDEs. In addition, they applied this algorithm for numerical solution of Logis tic
Stochastic Differential Equation for cell concentration

Allen and Linda (2017) presented a work on stochastic epidemic models, emphasizing their formulation, numerical simulation, and
analytical exploration. The study developed models based on continuous -time Markov chains and stochastic differential equations,
using well-known examples to illustrate key concepts. Furthermore, the authors also discussed analytical techniques for
approximating the probability of disease outbreaks, thereby providing valuable insights into the application of stochastic me thods
in epidemiology.

Yoshihiro Maki and Hideo Hirose (2013) proposed a SDE version of the SIR simulation model with application to SARS (Severe
Acute Respiratory Syndrome) case in 2003 in Hong Kong.

Ogwuche, O. I. and Emonyi, T. A formulated a stochastic model for the transmission of Lassa fever. In their work, they attempted
to demonstrate the impact of uncertainties in the mode of transmission of Lassa fever by subjecting the dynamics to some white
noise modeled by the Brownian motion as a Wiener process. An existing deterministic model involving the Susceptible, Exposed,
Infected and Recovered (SEIR) individuals were transformed into a stochastic differential equation model by applying the
procedure proposed by Allen et al (2008).

3. Methodol ogy

The model formulated is based on the following assumptions:

e Susceptible individuals has equal chances to be infected when contact with by the infectious individuals is established;
e Recovered individuals can be re-infected;

o Leishmaniasis induced death can occur in the infected class.

Based on the assumptions above, the following parameters were use as shown in Table 1.

3.1 Deterministic Model of Transmission of Leishmaniansis

The dynamics for the transmission of leishmaniasis is illustrated by Figure 1.
al

‘usl s
Figure 1: Schematic Diagram of the Leishmaniasis Model
3.2 Model Equations

The assumptions in section 3.1 and the model flowchart together lead to the following system of ordinary differential equatio ns
which describe the transmission dynamics of the disease as:

Parameter Epidemiological interpretation

Sy(0) Susceptible human population at time t
Ly(?) Latent human population at time t

1,(?) Infected human population at time t

Sy(1) Susceptible and — fly population at time t
(1) Infected and — fly population at time t

A Recruitment rate for human population

Ag Recruitment rate for sand — fly population
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Disease recovery rate for human class
o Movement rate from latent human class to infected human class
i Mortality rate for human population
Us Mortality rate for sand — fly population
b1 Disease transmission rate for sand — fly population
o Disease transmission rate for human population
J Disease induced death rate for human class

Table 1: Parameters of the model
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Sh(0)> 0, Ln(0) = 0, 1h(0) = 0, Ss(0) > 0, 15(0) =0,
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The system (1) is assumed to have positive model parameters.

3.3 Disease-free Equilibrium State

Disease-free equilibrium points are steady-state solutions where there is no disease in the population. At equilibrium states the rate
of change of the state varies with respect to time is Zero. That is the infected compartment of the model is equal to zero. T hus, Ly =
Ih=ls= 0. Then,

E[I = {Snr:'- LJ'.“ "rh'-S-s'- Ia} = {ﬁ*ﬂ'-{j Jl_j"ﬂ],{

3.4 Basic Reproduction Number

The basic reproduction number, denoted by Rg, represents the average number of secondary infections generated by a single
infectious individual (e.g., a rodent or human) in a fully susceptible population.

If Rp = 1, the disease is at a critical threshold where each case leads to one new case on average. This indicates that the infection is
neither increasing nor decreasing in the population.

If Rp < 1, it implies that an infected individual, on average, causes less than one new infection during their infectious period. In this
case, the disease cannot sustain itself in the population and can potentially be eradicated.

Conversely, if Ry > 1, it implies that each infected individual produces more than one new infection on average. As a result, the
disease will spread within the population, making the disease-free equilibrium (DFE) unstable and invasion inevitable.

To compute Rq for our model, we adopt the next-generation matrix method introduced by van den Driessche and Watmough
(2002). The nextgeneration matrix G is constructed using two components: F and V %, defined as follows:

o [aﬁ[xﬂ}]

i };j‘:_ j ©
v [ AV X ::' ]
i }.'IJ_-l. (3)

Where

F; =The new infections

Vi=Transfers of infections from one compartment to another
Xo= The disease free equilibrium

Ro = The dorminant eigenvalue of the matrix

G=FV™*

The infection classes are Ly, I,and Is. Hence,
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The dominant eigenvalue of the matrix is
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3.5 Formulation of the Stochastic Model for the Transmission of Leishmaniasis
Using the first modeling procedure developed by Allen et al (2008) we derived the Stochastic model for the deterministic model of

the Ordinary Differential Equation in (1).
The drift vector is defined as:

J=1

where A and pj are the random changes and the transition probabilities are defined in the table below:

Event

Change Probability

[20000] P1 = Ah At
[-10000] T P2 = phShAt
[-11000] T P3 = B1lsShAt
[0 — 1000 " P4 = phLh At
[0 — 1100] " P5 = oLh At
[0 — 100" P6 = (Mh + 8)lhAt
[0 — 100" P7 = 1lh At

fooo10] " Pg = As At
(000 710]; P9 = psSs At
000 =41 P10 = B21IhSs At
0000 — 1] P11 = pslsAt

Birth of Susceptible human
Death of Susceptible human
Susceptible becomes Latent
Death of Latent human
latent becomes infected
Death of infected human
Infected human becomes susceptible
Birth of susceptible sand fly
Death ofsusceptible sand fly
Susceptible sand fly becomes infected
infected sand fly dies naturally
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Similarly, the covariance matrix which is the volatility coefficient is de- fined as:
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Multiplying the covariance matrix we have:
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The resulting stochastic differential equation is given by :
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dX (1) = F(t, X(t)dt + V(t, X(t)dW(1))
X(0)= [X1 (0), X2 (0), X3 (0), X4 (0), X5 ()]

3.6 Numerical Simulation
The Euler-Maruyama and Stochastic Runge-Kutta methods for of SDEs were used for the simulation. These methods are
numerical schemes used for approximating the solutions of stochastic differential equations (SDEs).

3.6.1 Euler- Maruyama Method
The Euler—Ito SDE-Maruyama method is used for the simulation. For
dX;=af(t, X)dt + b(t, X)dW,

the Euler-Maruyama method is given by:

Yn+1l=Yn + a(n, Yn)(zntl —tn) + b(tn, Yn)(Wrn+1 — Wztn)
According to Kloeden and Platen (2007), one of the simplest time-discrete approximations of an Ito” process is the Euler
approximation, or the Euler—Maruyama approximation as it is sometimes called.
Consider an Ito"—Maruyama process X = {X;, to <t < T} satisfying the scalar stochastic differential equation:

dX;=a(t, X)dt + b(t,X))dW,
On to <t <T, with the initial value X;o = Xo, and for a given discretization

t=o<m<- << <gny=T
of the time interval [to,T], an Euler approximation is a continuous-time stochastic process

Y={Y (1) to<t<T}
Satisfying the iterative scheme:

Yn+1l =Yn + a(zn, Yn)(tn+1 — tn) + b(zn, Yn)(Wen+1 — Wrn)
In the 1-dimensional case, d =m = 1, the Euler scheme has the form
Yo = Yo+ aA + bAW
where
A = Ty — 70 = 1(0) = J(0)
is the length of the time discretization subinterval [z, 7,+1], and

AW = Wn+1 — Wen.

For k =1,...d, the scheme can be written as
YE =Y afA 4 kAW,
where the drift and diffusion coefficients are d-dimensional vectors
a= (al,...,ad), b= (bl,...,bd).
For the general multi-dimensional case with d,m =1,2,..., the k-th component of the Euler scheme has the form
m

Y, =Y +aka+ Z by AW;
j=1
AW; =Wl — Wi =1I(j)=J(j)

is the N(0,A)-distributed increment of the j-th component of the m-dimensional standard Wiener process W on [z,,7n+1], and AWy
and AW, are independent for ji/~ jo. The diffusion coefficient

b = [by]
is a d x m matrix

where

3.6.2 Stochastic Runge-Kutta Method
Stochastic Runge-Kutta (SRK) method. This method was introduced by Rumellin (1982). SRK was developed based on the
increment of Wiener process,

Ji(t) = [ dwt)

The general form of SRK for numerical approxlmatlon SDEs is:

Y, =Y, +AZa”f(Y )+jlzbug(Y) i=12,.

Vs = Yn+AZai,,-f(Yi )+thg(Yj).
i=1

where A = (a; Jr)SXS and B = (b ;)sxs are matrices of real element
= (ay...a5) and y’ = (y1...ys) are row vectors.
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4. Numerical Implementation and Results
The resulting model in equation (1) was simulated using the Euler-Maruyama and Stochastic Runge-kutta methods using the
parameter and initial condition:

Parameter Value
T 0.2

o 0.1

Hi 0.01
Hs 0.02
b 0.05
P 0.04
0 0.1

Table 3: Table of value for the parameters

Component Sy, dynamics
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Figure 2: susceptible human
Component Ly, dynamics
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Figure 3: latent human
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Component Iy, dynamics

141 i —— Euler-Maruyama
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Figure 4: infected human
Component S; dynamics
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Figure 5: Susceptible sun-fly
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Figure 6: Infected sun-fly
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5. Conclusion and Recommendations

The results demonstrate that while both methods can capture the basic epidemic dynamics, the Runge-Kutta method is
significantly more accurate for moderate step sizes. Euler’s method shows qualitative agreement but accumulates numerical error
with larger step sizes. Runge-Kutta provides more stable and accurate solutions.

Numerical methods are essential tools for simulating complex nonlinear systems like the Leishmaniasis model. The choice of
method affects the accuracy and stability of the solution. For most applications, the Runge-Kutta method provides a good balance
between computational cost and precision.
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