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Leishmaniasis is a vector-borne infectious disease transmitted through the bite of 

infected female sandflies, posing significant public health challenges in many tropical 

and subtropical regions. In this study, we develop and analyze a stochastic differential 

equation (SDE) model for the transmission dynamics of Leishmaniasis to  capture the 

inherent randomness and environmental fluctuations that influence disease spread. 

Starting from a deterministic compartmental model consisting of five interacting 

populations: susceptible humans, latent humans, infected humans, susceptible 

sandflies, and infected sandflies. We incorporate stochasticity by applying the 

procedure proposed by Allen et al. (2008). The resulting SDE was numerically solved 

and simulated using both the Euler–Maruyama and Stochastic Runge–Kutta methods 

using python to examine the dynamic behavior of the disease under uncertainty . 
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1. Introduction 

Leishmaniasis is a vector borne diseases that consist of both the host and vector in its transmission and caused by the protozoan 

parasite Leishmania. This disease is one of the major tropical and subtropical diseases and transmitted by the bite of a sand  fly 

specifically the female sand fly. Leishmaniasis has been classified as an endemic across the world affecting Asia, Africa, the 

Americas, and the Mediterranean region. Numerous environmental factors affect the distribution and dispersion of this disease  

(Desjeux 2004 and Shweta Khandibharad1 and Shailza Singh, 2023). 

Understanding the geographical distribution and high-risk areas of diseases is a fundamental requirement for effective 

management, decision-making, and health system planning in any country. Today, Geographic Information Syste ms (GIS) serve as 

an important tool in health-related programs, allowing for cost-effective disease mapping, strategic planning, and analysis of 

factors influencing disease patterns. GIS also provides valuable data on meteorological and ecological conditio ns necessary for the 

survival of specific pathogens and their vectors. Consequently, the use of GIS can help predict seasonal variations in diseas es by 

linking them to weather patterns and environmental conditions in different regions. (Yang G-J, Vounatsou P, and Xiao-Nong Z , 

2005). 

The life cycle of Leishmania consists of two distinct stages: one in the female sandfly and the other in the mammalian host ( such 

as humans or dogs). When an infected sandfly takes a blood meal, it injects saliva that prevents clotting and simultaneously 

releases metacyclic promastigotes at the bite site. These promastigotes are slender, elongated, motile, and extracellular. 

Neutrophils are the first immune cells to arrive at the site, engulfing the promastigotes. However, becau se neutrophils are short-

lived and undergo apoptosis, they are thought to act as “Trojan horses,” providing the parasites with a pathway to enter 

macrophages while evading immune activation. Inside macrophages, the promastigotes transform into amastigotes,  which are 

small, round, and non-motile, and begin multiplying before spreading to nearby tissues. When another sand-fly feeds on an 

infected host, it ingests macrophages containing amastigotes. These cells rupture within the sand-fly’s  midgut, releasing the 

parasites, which then develop further, migrate to the proboscis, and become ready to infect a new host. (Ty et al. 2019).  

Traditionally, many mathematical models in disease epidemiology have relied on deterministic ordinary differential equations 

(ODEs), which do not capture the inherent uncertainties in disease transmission. Such uncertainties may arise from assumptions 

regarding disease parameters, population heterogeneity, behavioral dynamics, intervention strategies, external influences, an d 

unforeseen events. In contrast, stochastic models explicitly incorporate the randomness associated with transmission processes, 

reflecting the probabilistic nature of events such as infection and recovery. This allows for a more realistic representation  of 

variability and uncertainty in disease spread. While deterministic ODE models are suitable for large populations, stochastic models 

are particularly advantageous in describing dynamics within small populations or rare events (Ogwuche, 2023).  

In this study, we address these uncertainties by introducing random perturbations modeled as a Wiener process, thereby 

transforming the deterministic ODE framework into a system of stochastic differential equations (SDEs). Specifically, we begin 

with the deterministic ODE model for Leishmaniasis and subsequently formulate its stochastic counterpart to better capture the 

dynamics of disease transmission. 
 

2. Literature Review 

Several works have been done on stochastic epidemic models. Ogwuche, Iortyer, Emonyi and Ali M. (2023) formulated an SDE 

model for the transmission of Tuberculosis (TB). In their work, a deterministic model for the transmission of TB was presente d 
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and then transformed into a system of stochastic differential equation model. The Euler- Maruyama method was used for the 

simulation. 

Tawfiqullah Ayoubi and Ahmad shahed (2024) investigated an algorithm of stochastic Runge -Kutta method for numerical solution 

of stochastic differential equations (SDEs). Because, most SDEs do not have analytical solution. Hence, numerical solution is 

required to estimate the numerical solution of SDEs. In addition, they applied this algorithm for numerical solution of Logis tic 

Stochastic Differential Equation for cell concentration 

Allen and Linda (2017) presented a work on stochastic epidemic models, emphasizing their formulation, numerical simulation, and 

analytical exploration. The study developed models based on continuous -time Markov chains and stochastic differential equations, 

using well-known examples to illustrate key concepts. Furthermore, the authors also discussed analytical techniques for 

approximating the probability of disease outbreaks, thereby providing valuable insights into the application of stochastic me thods 

in epidemiology. 

Yoshihiro Maki and Hideo Hirose (2013) proposed a SDE version of the SIR simulation model with application to SARS (Severe 

Acute Respiratory Syndrome) case in 2003 in Hong Kong. 

Ogwuche, O. I. and Emonyi, T. A formulated a stochastic model for the transmission of Lassa fever. In their work, they attempted 

to demonstrate the impact of uncertainties in the mode of transmission of Lassa fever by subjecting the dynamics to some whit e 

noise modeled by the Brownian motion as a Wiener process. An existing deterministic model involving the Susceptible, Exposed, 

Infected and Recovered (SEIR) individuals were transformed into a stochastic differential equation model by applying the 

procedure proposed by Allen et al (2008). 

 

3. Methodology 

The model formulated is based on the following assumptions: 

 Susceptible individuals has equal chances to be infected when contact with by the infectious individuals is established;  

  Recovered individuals can be re-infected;  

  Leishmaniasis induced death can occur in the infected class.  

Based on the assumptions above, the following parameters were use as shown in Table 1. 

 

3.1 Deterministic Model of Transmission of Leishmaniansis 

The dynamics for the transmission of leishmaniasis is illustrated by Figure 1. 

 
Figure 1: Schematic Diagram of the Leishmaniasis Model 

 

3.2 Model Equations 

The assumptions in section 3.1 and the model flowchart together lead to the following system of ordinary differential equatio ns 

which describe the transmission dynamics of the disease as: 

 

Parameter Epidemiological interpretation 

Sh(t) Susceptible human population at time t 

Lh(t) Latent human population at time t 

Ih(t) Infected human population at time t 

Ss(t) Susceptible and – fly population at time t 

Is(t) Infected and – fly population at time t 

λh Recruitment rate for human population  

λs Recruitment rate for sand – fly population 

 

S h L h I h 

I 
s S 
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µ h S h 

µ h L h 
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τ Disease recovery rate for human class  

α Movement rate from latent human class to infected human class  

µh Mortality rate for human population  

µs Mortality rate for sand – fly population 

β1 Disease transmission rate for sand – fly population 

β2 Disease transmission rate for human population  

δ Disease induced death rate for human class  

Table 1: Parameters of the model 
 

 

 

 

 

 

              (1) 

 

 

 
 

 

subject to initial conditions 

 Sh(0) > 0, Lh(0) ≥ 0, Ih(0) ≥ 0, Ss(0) > 0, Is(0) ≥ 0, 

where 

. 

The system (1) is assumed to have positive model parameters. 
 

3.3 Disease-free Equilibrium State 

Disease-free equilibrium points are steady-state solutions where there is no disease in the population. At equilibrium states the rate 

of change of the state varies with respect to time is Zero. That is the infected compartment of the model is equal to zero. T hus, Lh = 

Ih=Is = 0. Then, 

 

λ 

 

3.4 Basic Reproduction Number 

The basic reproduction number, denoted by R0, represents the average number of secondary infections generated by a single 

infectious individual (e.g., a rodent or human) in a fully susceptible population. 

If R0 = 1, the disease is at a critical threshold where each cas e leads to one new case on average. This indicates that the infection is 

neither increasing nor decreasing in the population. 

If R0 < 1, it implies that an infected individual, on average, causes less than one new infection during their infectious period. In this 

case, the disease cannot sustain itself in the population and can potentially be eradicated. 

Conversely, if R0 > 1, it implies that each infected individual produces more than one new infection on average. As a result, the 

disease will spread within the population, making the disease-free equilibrium (DFE) unstable and invasion inevitable. 

To compute R0 for our model, we adopt the next-generation matrix method introduced by van den Driessche and Watmough 

(2002). The nextgeneration matrix G is constructed using two components: F and V 
−1

, defined as follows: 

 

  (2) 

  (3) 

Where 

Fi =The new infections 

Vi =Transfers of infections from one compartment to another 

X0= The disease free equilibrium 

R0 = The dorminant eigenvalue of the matrix 

G= FV 
−1

 

 

The infection classes are Lh , Ih and Is. Hence, 
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and using equation (2) and (3) we obtained: 

 
 

and 

 
 

Therefore, 

 
 

The product of FV 
−1 

is 

 
 

The dominant eigenvalue of the matrix is  

 
 

3.5 Formulation of the Stochastic Model for the Transmission of Leishmaniasis 

Using the first modeling procedure developed by Allen et al (2008) we derived the Stochastic model for the deterministic model of 

the Ordinary Differential Equation in (1). 

The drift vector is defined as: 

 

where λ and pj   are the random changes and the transition probabilities are defined in the table below: 

 

Change Probab ility  Even t  

[10000]T    

[−10000]T  

[−11000]T  

[0 − 1000]T 

[0 − 1100]T 

[00 − 100]T 

[10 − 100]T 

[00010]T    

[000 − 10]T 

[000 − 11]T 

[0000 − 1]T 

P1  = Λh  ∆t     

P 2   =  µhSh ∆ t   

P3  = β1 Is Sh ∆t  

P 4   =  µh Lh  ∆ t   

P5  = αLh  ∆t  

P6  = (µh  + δ )Ih ∆t  

P7  = τIh  ∆t  

P8  = Λs  ∆t   

P9  = µsSs ∆t  

P10  = β2 IhSs ∆t  

P11  = µs Is ∆t  

Birth of Susceptible human 

Death of Susceptible human 

Susceptible becomes Latent 

Death of Latent human 

latent becomes infected 
Death of infected human 

Infected human becomes susceptible 

Birth of susceptible sand fly 

Death of susceptible sand fly 

Susceptible sand fly becomes infected 

infected sand fly dies naturally 
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Similarly, the covariance matrix which is the volatility coefficient is de- fined as: 

 

 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[          ]    

 
 
 
 
 
− 
 
 
 
  
 
 
 
 

[−          ]    

 
 
 
 
 
− 
 
 
 
  
 
 
 
 

[−          ]    

 
 
 
 
 
 
− 
 
 
  
 
 
 
 

[ −         ]    

 
 
 
 
 
 
− 
 
 
  
 
 
 
 

[ −         ]

   

 
 
 
 
 
 
 
− 
 
  
 
 
 
 

[   −       ]    

 
 
 
 
 
 
 
− 
 
  
 
 
 
 

[   −       ]    

 
 
 
 
 
 
 
 
 
  
 
 
 
 

[          ]    

 
 
 
 
 
 
 
 
− 
  
 
 
 
 

[     −     ]

    

 
 
 
 
 
 
 
 
− 
  
 
 
 
 

[     −    ]     

 
 
 
 
 
 
 
 
 
 
− 
 
 
 
 
 
 

[        −  ] 

 

Multiplying the covariance matrix we have: 

 

                             0                                      0                                         0                         −β2 Ih                 β2 Ih  + µsIs
 

 

 

The resulting stochastic differential equation is given by : 
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dX (t ) = F (t , X(t ))dt + V (t , X(t )dW(t)) 

     X(0)= [X1 (0), X2 (0), X3 (0), X4 (0), X5 (0)]T 

 

3.6 Numerical Simulation 

The Euler-Maruyama and Stochastic Runge-Kutta methods for of SDEs were used for the simulation. These methods are 

numerical schemes used for approximating the solutions of stochastic differential equations (SDEs). 

 

3.6.1 Euler- Maruyama Method 

The Euler–Ito SDE-Maruyama method is used for the simulation. For 

                  dXt = a(t, Xt)dt + b(t, Xt)dWt 
the Euler–Maruyama method is given by: 

Yn+1 = Yn + a(τn,Yn)(τn+1 − τn) + b(τn,Yn)(Wτn+1 − Wτn) 
According to Kloeden and Platen (2007), one of the simplest time-discrete approximations of an Itoˆ process is the Euler 

approximation, or the Euler–Maruyama approximation as it is sometimes called. 

Consider an Itoˆ–Maruyama process X = {Xt, t0 ≤ t ≤ T} satisfying the scalar stochastic differential equation: 

dXt = a(t, Xt)dt + b(t,Xt)dWt 
On t0 ≤ t ≤ T, with the initial value Xt0 = X0, and for a given discretization 

t0 = τ0 < τ1 < ··· < τn < ··· < τN = T 
of the time interval [t0,T], an Euler approximation is a continuous -time stochastic process 

Y = {Y (t), t0 ≤ t ≤ T} 
Satisfying the iterative scheme: 

Yn+1 = Yn + a(τn,Yn)(τn+1 − τn) + b(τn,Yn)(Wτn+1 − Wτn) 
In the 1-dimensional case, d = m = 1, the Euler scheme has the form 

Yn+1 = Yn + a∆ + b∆W 
where 

∆ = τn+1 − τn = I(0) = J(0) 
is the length of the time discretization subinterval [τn,τn+1], and 

∆W = Wτn+1 − Wτn. 

For k = 1,...,d, the scheme can be written as  

 
where the drift and diffusion coefficients are d-dimensional vectors 

a = (a1,...,ad), b = (b1,...,bd). 

For the general multi-dimensional case with d,m = 1,2,..., the k-th component of the Euler scheme has the form 

    
     

      ∑      

 

   

 

where 

 
is the N(0,∆)-distributed increment of the j-th component of the m-dimensional standard Wiener process W on [τn,τn+1], and ∆Wj1 

and ∆Wj2 are independent for j1  = j2. The diffusion coefficient 

b = [bk,j] 

is a d × m matrix. 

 

3.6.2 Stochastic Runge-Kutta Method 

Stochastic Runge-Kutta (SRK) method. This method was introduced by Rumellin (1982). SRK was developed based on the 

increment of Wiener process, 

 
The general form of SRK for numerical approximation SDEs is:  

       ∑      (  
 )    ∑    

 

   

 (  )           𝑠

 

   

 

         ∑     (  
 )    ∑  

 

   

 (  ) 

 

   

 

where A = (ai,j)sxs and B = (bi,j)sxs are matrices of real element, 

α
T 

= (α1...αs) and γ
T 

= (γ1...γs) are row vectors. 

 

I 



 

JENER Journal of Empirical and Non-Empirical Research, Volume 2, Issue 2, 2026   211 

 

RESEARCH ARTICLE 

4. Numerical Implementation and Results  

The resulting model in equation (1) was simulated using the Euler-Maruyama and Stochastic Runge-kutta methods using the 

parameter and initial condition: 

 

Parameter Value 

τ 0.2 

α 0.1 

µh 0.01 

µs 0.02 

β1 0.05 

β2 0.04 

δ 0.1 

Table 3: Table of value for the parameters  

 

 
Figure 2: susceptible human 

 

 
Figure 3: latent human 
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Figure 4: infected human 

 

 
Figure 5: Susceptible sun-fly 

 

 
Figure 6: Infected sun-fly 
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5. Conclusion and Recommendations  

The results demonstrate that while both methods can capture the basic epidemic dynamics, the Runge-Kutta method is 

significantly more accurate for moderate step sizes. Euler’s method shows qualitative agreement but accumulates numerical error 

with larger step sizes. Runge-Kutta provides more stable and accurate solutions. 

Numerical methods are essential tools for simulating complex nonlinear systems like the Leishmaniasis model. The choice of 

method affects the accuracy and stability of the solution. For most applications, the Runge-Kutta method provides a good balance 

between computational cost and precision. 
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